Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photodiagnosis Photodyn Ther ; 40: 103073, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35998882

RESUMO

Hypericin (HY) is a lipophilic photosensitizer (PS) extensively employed for photodynamic therapy (PDT), presenting high absorption in the visible region, chemical and photostability, as well as a good triplet quantum yield. Supramolecular complexation of photosensitizers into cyclodextrins (CD) is promising to improve their poor solubility, compromising their bioavailability and upcoming applications in PDT. This research produced an inclusion complex between HY and ß-CD through the co-solvent method. HY became soluble after inclusion into ß-CD cavities, besides retaining its fluorescent and singlet oxygen quantum yields (ϕf =0.115 and ϕΔ= 0.23, respectively), which are essential parameters for PDT uses and are not reported in the literature. By the theoretical analysis, since ΔG < 0, it was easy to conclude that HY inclusion into ß-CD is a spontaneous process. Additionally, the complexes presented no changes in excited states after complexation. ß-CDHY was 27% more phototoxic than free HY when tested in MCF7 cells using 3 J cm-2 of irradiation, indicating a better cell uptake of HY. These outcomes suggest that the inclusion complex of HY into ß-CD has the potential for use in PDT.


Assuntos
Perileno , Fotoquimioterapia , beta-Ciclodextrinas , Fotoquimioterapia/métodos , Perileno/farmacologia , Perileno/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Solubilidade , Modelos Teóricos
2.
Photochem Photobiol Sci ; 21(9): 1659-1675, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35689154

RESUMO

Solar driven semiconductor-based photoreforming of biomass derivatives, such as glycerol is a sustainable alternative towards green hydrogen evolution concerted with production of chemical feedstocks. In this work, we have investigated the influence of the pH of the hydrothermal treatment on the efficiency of Bi2WO6 as photocatalyst in the glycerol photoreforming. Bi2WO6 is pointed as a promising material for this application due its adequate band gap and the ability to promote hole transfer directly to glycerol without formation of non-selective ⋅OH radicals. Samples prepared at neutral to moderate alkaline conditions (pH = 7-9) are highly crystalline, while those prepared in acidic media (pH = 0-2) exhibit higher concentrations of oxygen vacancies. At pH = 13, the non-stoichiometric Bi(III)-rich phase Bi3.84W0.16O6.24 is formed. All samples were fully characterized towards their optical and morphological properties. UV-Vis irradiation of the photocatalysts modified with 1% m/m Pt and in the presence of 5% v/v aqueous glycerol solution leads to H2 evolution and glycerol oxidation. The sample prepared at pH = 0 exhibited the highest photonic efficiency (ξ) for H2 evolution (1.4 ± 0.1%) among the investigated samples with 99% selectivity for simultaneous formic acid formation. Similar performance was observed for the non-stoichiometric Bi3.84W0.16O6.24 sample (ξ = 1.2 ± 0.1% and 88% selectivity for formic acid), whereas the more crystalline sample prepared at pH = 9 was less active (ξ = 0.9 ± 0.1%) and leads to multiple oxidation products. The different behaviors were rationalized based on the role of oxygen vacancies as active adsorption and redox sites at the semiconductor surface, stablishing clear relationships between the semiconductor structure and its photocatalytic performance. The present work contributes for the rational development of specific photocatalysts for glycerol photoreforming.


Assuntos
Glicerol , Processos Fotoquímicos , Catálise , Formiatos , Glicerol/química , Concentração de Íons de Hidrogênio , Oxigênio/química
3.
Dalton Trans ; 50(42): 15248-15259, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34632989

RESUMO

A new ruthenium polypyridyl complex, [Ru(bpy)2(acpy)]+ (acpy = 2-pyridylacetate, bpy = 2,2'-bipyridine), was synthesized and fully characterized. Distinct from the previously reported analog, [Ru(bpy)2(pic)]+ (pic = 2-pyridylcarboxylate), the new complex is unstable under aerobic conditions and undergoes oxidation to yield the corresponding α-keto-2-pyridyl-acetate (acpyoxi) coordinated to the RuII center. The reaction is one of the few examples of C-H activation at mild conditions using O2 as the primary oxidant and can provide mechanistic insights with important implications for catalysis. Theoretical and experimental investigations of this aerobic oxidative transformation indicate that it takes place in two steps, first producing the α-hydroxo-2-pyridyl-acetate analog and then the final product. The observed rate constant for the first oxidation was in the order of 10-2 h-1. The reaction is hindered in the presence of coordinating solvents indicating the role of the metal center in the process. Theoretical calculations at the M06-L level of theory were performed for multiple reaction pathways in order to gain insights into the most probable mechanism. Our results indicate that O2 binding to [Ru(bpy)2(acpy)]+ is favored by the relative instability of the six-ring chelate formed by the acpy ligand and the resulting RuIII-OO˙- superoxo is stabilized by the carboxylate group in the coordination sphere. C-H activation by this species involves high activation free energies (ΔG‡ = 41.1 kcal mol-1), thus the formation of a diruthenium µ-peroxo intermediate, [(RuIII(bpy)2(O-acpy))2O2]2+via interaction of a second [Ru(bpy)2(acpy)]+ was examined as an alternative pathway. The dimer yields two RuIVO centers with a low ΔG‡ of 2.3 kcal mol-1. The resulting RuIVO species can activate C-H bonds in acpy (ΔG‡ = 23.1 kcal mol-1) to produce the coordinated α-hydroxo-2-pyridylacetate. Further oxidation of this intermediate leads to the α-keto-2-pyridyl-acetate product. The findings provide new insights into the mechanism of C-H activation catalyzed by transition-metal complexes using O2 as the sole oxygen source.

4.
Dalton Trans ; 49(45): 16368-16379, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32458940

RESUMO

This work describes the preparation of a new thiosemicarbazone derivative, (Z)-N-ethyl-2-(6-oxo-1,10-phenanthrolin-5(6H)-ylidene)hydrazinecarbothioamide (phet) and its respective Re(i) tricarbonyl chloro complex, fac-[ReCl(CO)3(phet)]. The spectroscopic, photophysical and electrochemical properties of the new complex were fully investigated through steady state and time-resolved techniques along with computational calculations. In fac-[ReCl(CO)3(phet)], the new ligand is coordinated to the metal center through the pyridyl rings of the phenanthroline moiety. The unbound electron pairs in the S atom of the bending thiosemicarbazone group induce new low energy lying electronic transitions. Consequently, enhanced visible light absorption up to 550 nm is observed in acetonitrile due to the overlap between MLCTRe→phet and ILphet(n→π*) transitions. The absorption bands and emission quantum yields of fac-[ReCl(CO)3(phet)] are sensitive to proton concentration due to an acid-basic equilibrium in the N atoms of the thiosemicarbazone. Proton dissociation constants of 10.0 ± 0.1 and 11.4 ± 0.2 were determined respectively for the ground and excited states of the new complex. Spectral changes could also be observed in the presence of Zn2+ cations which can be further explored for sensing applications. The electrochemical behavior of the new complex was studied in detail, revealing up to four one electron reduction processes in the range from 0 to -2.4 V vs. Fc+/Fc. With support of DFT calculations, the first three processes are ascribed to the reduction of the coordinated phet ligand followed by the ReI/0 reduction and consequent Cl- release. The new complex was able to act as an electrocatalyst for CO2 reduction into CO (Eonset = -1.92 V vs. Fc+/Fc), with a turnover frequency of 2.81 s-1 and turnover number of 24 ± 1 in anhydrous acetonitrile, being the first Re(i) tricarbonyl complex with a thiosemicarbazone derivative described for this goal. The detailed characterization carried out here can drive the development of new Re(i)-thiosemicarbazone derivatives for different applications.

5.
Micron ; 39(1): 40-4, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17689966

RESUMO

Drug delivery systems involving the use of polymers are widely studied and discovery of biocompatible polymers has become the focus of research in this area. Psoralen loaded poly(DL-lactide-co-glycolide) (PLGA) microspheres to be used in PUVA therapy (psoralen and UVA irradiation (ultraviolet A, 320-400 nm) of psoriasis were identified in paraffin sections by histological analysis. The psoralen loaded PLGA microspheres were prepared using the solvent evaporation technique. They were spherical and possessed an external smooth surface as observed by scanning electron microscopy (SEM) analysis. This study describes a modification in the routine preparation of microsphere samples for examination by light microscopy. The changes involved fixative agents and/or stains allowing the identification of microspheres containing a non-fluorescent material. The preservation and identification of microspheres in tissues for histological processing in paraffin was greatly improved by these modifications as proven by our results.


Assuntos
Ficusina/análise , Histocitoquímica/métodos , Ácido Láctico/análise , Microesferas , Ácido Poliglicólico/análise , Polímeros/análise , Pele/química , Pele/patologia , Animais , Masculino , Microscopia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Wistar
6.
J Phys Chem A ; 110(36): 10545-51, 2006 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-16956235

RESUMO

In this work, the interaction between fisetin (3,3',4',7-tetrahydroxyflavone) (Fis) and cyclodextrins (CDs) (alpha and beta) was studied through UV-vis absorption, steady-state fluorescence, induced circular dichroism, and (1)H NMR experiments with dependence on temperature and pH. Some experimental data were compared with quantum-mechanics studies based on the SAM1 (AMPAC) semiempirical model, as well as with the B3LYP and MPW1PW91 functional models from density functional theory using the 6-311G and 3-21G basis sets. The spectroscopic measurements show that Fis does not form stable complexes with alpha-CD. On the other hand, at pH 4.0 and 6.5, the complex Fis-beta-CD is formed in a Fis:beta-CD 1:1 stoichiometry and an equilibrium constant (K) of 900 +/- 100 M(-1). In basic medium (pH 11.5), K decreases to 240 +/- 90 M(-1) because Fis deprotonation leads to its better solubilization in water. Molecular modeling points out that Fis is not totally inserted into the inner cavity of beta-CD. The formation of the inclusion complex renders an environment that enhances intramolecular excited state proton transfer. The inclusion complex is formed preferentially via entry of the Fis phenyl group into beta-CD.


Assuntos
Ciclodextrinas/química , Flavonoides/química , Flavonóis , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Estrutura Molecular , Sensibilidade e Especificidade , Solubilidade , Termodinâmica
7.
Drug Deliv ; 13(6): 447-54, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17002973

RESUMO

Here we describe the application of microparticles (MPs) for the delivery and release of the drug a benzopsoralen. We also evaluated the intracellular distribution and cellular uptake of the drug by using an encapsulation technique for therapeutic optimization. MPs containing the compound 3-ethoxycarbonyl-2H-benzofuro[3,2-f]-1-benzopyran-2-one (psoralen A) were prepared by the solvent evaporation technique, and parameters such as particle size, drug encapsulation efficiency, effect of the encapsulation process on the drug's photochemistry, zeta potential, external morphology, and in vitro release behavior were evaluated. The intracellular distribution of MPs as well as their uptake by tissues were monitored. Size distribution studies using dynamic ligh scattering and scanning electron microscopy revealed that the MPs are spherical in shape with a diameter of 1.4 micro m. They present low tendency toward aggregation, as confirmed by their zeta potential (+10.6 mV). The loading efficiency obtained was 75%. As a consequence of the extremely low diffusivity of the drug in aqueous medium, the drug release profile of the MPs in saline phosphate buffer (pH 7.4) was much slower than that obtained in the biological environment. Among the population of peritoneal phagocytic cells, only macrophages were able to phagocytose poly-d,l-lactic-co-glycolic acid (PLGA) MP. The use of psoralen A in association with ultraviolet light (360 nm) revealed morphological characteristics of cell damage such as cytoplasmic vesiculation, mitochondria condensation, and swelling of both the granular endoplasmatic reticulum and the nuclear membrane. These results indicate that PLGA MP could be a promising delivery system for psoralen in connection with ultraviolet irradiation therapy (PUVA).


Assuntos
Ficusina/química , Furocumarinas/química , Ácido Láctico/química , Ácido Poliglicólico/química , Polímeros/química , Animais , Células Cultivadas , Química Farmacêutica , Portadores de Fármacos , Composição de Medicamentos , Eletroquímica , Ficusina/administração & dosagem , Furocumarinas/administração & dosagem , Luz , Macrófagos/fisiologia , Masculino , Microscopia Eletrônica de Transmissão e Varredura , Nanopartículas , Tamanho da Partícula , Fagocitose , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Wistar , Espalhamento de Radiação , Solventes , Espectrofotometria Ultravioleta , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...